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Introduction/Abstract

The IPCS framework for development of data-derived uncertainty factors1 that is described and used extensively in other chapters of this volume is a welcome effort to open up the traditional system of risk assessment for noncancer effects.  It provides guidance for modification of the traditional adjustment factors on a case-by-case basis where more information is present than usual on either human interindividual variability or interspecies dose projections for the parent chemical or metabolite responsible for the toxicity of a particular environmental chemical.  

Welcome as this goal is, however, the derivation of the IPCS guidance does not draw on as extensive a database of pharmacokinetic and pharmacodynamic variability observations as is now available (Hattis et al., 1999b 2002 also see our web site [http://www2.clarku.edu/faculty/dhattis] documenting much of the data).  Nor does it derive the specific guidance for modifying the existing uncertainty factors on a quantitative analysis of the “baseline “uncertainties in human pharmacokinetic and pharmacodynamic variabilities for individual chemicals.  (By the “baseline” uncertainty, we mean, the uncertainty one should have in the absence of chemical-specific information about these variabilities, based on prior observations with putatively analogous chemicals.)  

This chapter provides a start to such an analysis.  Ultimately we derive preliminary conclusions relevant to the allocation of total interindividual variability (and uncertainty in this variability) among pharmacokinetic and pharmacodynamic components.  This analysis is done with and without new information that hypothetically removes all uncertainty in the amount of human pharmacokinetic or pharmacodynamic variability for responses to particular toxicants.  Briefly, we found in our previous analyses of human interindividual variability data (Hattis et al. 1999a 1999b, 2002),2 that pharmacodynamic variability is generally larger than pharmacokinetic variability. The analysis in this chapter extends this with new estimates of the uncertainty in pharmacokinetc vs pharmacodynamic variability.  Based on this we find that the information benefit from perfect information on pharmacokinetic variability is less than what would be expected based on simple application of the formulae in the most recent IPCS guidance.  A final section provides numerical guidance on changes to the default factor for human interindividual variability that would lead to greater consistency in the health protection afforded by RfDs based on quantal vs. continuous toxicity endpoints, and larger vs. smaller overall traditional uncertainty factors (including factors introduced for subchronic vs chronic studies; interspecies projections, use of LOAELs vs NOAELs, etc.). 

Below we first briefly recapitulate the IPCS guidance (reviewed in more detail in Chapter 2).  We then review the framework developed in our previous work (Hattis et al. 2002) to replace each of the traditional “uncertainty” factors with empirical distributions, and use those distributions in Monte Carlo simulations of the likely risk performance of 18 randomly-selected RfD’s from the IRIS data base (Table 4.1). [All of these calculations assume that the human interindividual variability in thresholds for effect are lognormally distributed—that is although the diverse population of potentially exposed individuals differs widely in their individual vulnerability/sensitivity because of a wide variety of physiological factors and ongoing pathologies, there is not, in general, any finite “population threshold” that can be assumed to produce a true zero incidence of harm for the whole group.] The results of these simulations are then compared with our hypothesized “straw man” risk management criterion:

· that there should be 95% confidence that the projected risks for the general population from exposure at the RfD should be less than an incidence of 1/100,000 for mild adverse effects.
In addition to the computational tools from previous work and the current paper is based on information from an updated database for human interindividual variability [http://www2.clarku.edu/faculty/dhattis].  The aim is to make a preliminary assessment of what values for the traditional single-point uncertainty factors, when included in a revised framework for inferring RfDs from basic toxicological data, would provide approximately equivalent risk performance for those 18 sample RfD chemicals.  This analysis is conducted with and without additional measurements that would hypothetically provide perfect information about the extent of either pharmacokinetic or pharmacodynamic variability.  

To do this (see flow chart in Figure 1), we first summarize the observed distributions of interindividual variability measurements of AUC (36 drugs) and Cmax (29 drugs) parameters.* This, combined with analogous data from the existing pharmacodynamic database leads to basic inferences for the split of the assumed lognormal variance in overall human susceptibility into pharmacokinetic and pharmacodynamic components.  Then we analyze the comparative uncertainty in these two components.  In each case we correct as best we can for the spread in chemical-specific estimates for both pharmacokinetic and pharmacodynamic parameters that is attributable to the limited sample sizes in the studies in our database.  After this subtraction the remaining differences among chemicals in estimated pharmacokinetic and pharmacodynamic variability represents our estimates of the uncertainty in the real pharmacokinetic and pharmacodynamic variabilities for a randomly drawn RfD chemical or drug.  It is these uncertainties that could be reduced by experimental measurements of pharmacokinetic or pharmacodynamic variability for the random RfD chemical. Perfect information is modeled by reducing to zero the uncertainty in one or both of these variability estimates for the sample RfD chemicals within the “straw man” risk simulation system.

IPCS Assumptions of Single Point Factors Representing Overall Interindividual Variability, and Pharmacokinetic/Pharmacodynamic Components

The IPCS Framework1 expands upon the traditional approach for the derivation of RfD’s by allowing for the incorporation of chemical specific data into the uncertainty factor analysis.  Chemical Specific adjustment factors (CSAFs) are intended to be used in place of the traditional 10-fold factors when there is a judgment that enough suitable quantitative toxicokinetic (pharmacokinetic) and/or toxicodynamic (pharmacodynamic) data are available.  An important innovation in the IPCS framework is a split of each of the traditional interspecies and interindividual variability uncertainty factors between pharmacokinetic and pharmacodynamic components.  These splits allow more readily available pharmacokinetic data to be practically used to replace a portion of the total uncertainty factor(s) even when more difficult to obtain pharmacodynamic information is not available.  For human interindividual variability, an even split of 3.2 for both the kinetic and dynamic factors is proposed.  For practical applications using real pharmacokinetic data [for the Area Under the Curve (AUC) of the concentration X time plot for the active chemical species for a chronic toxic agent, and the maximum systemic concentration (Cmax) for an acute toxic agent] the framework proposes use of the multiplicative distance between the 95th and 50th percentiles of the human population as the “data derived” replacement for the 3.2-fold kinetic factor.
   

Description and Update of Previous Work to Construct a “Straw Man” Proposal for a Quantitative Distributional Goal for Defining RfDs Protection Objectives 

In previous work2 we developed a “straw man” probabilistic system for deriving RfDs.  The foundation of this system is that quantitative insights into particular sources of uncertainty for untested chemicals can be developed by assembling empirical data for putatively analogous chemicals that have been tested.  The untested chemical is then regarded as a random draw from the set of analogous chemicals.  This essentially reduces an uncertainty to a directly observable variability (among the analogous chemicals) for the uncertainty component in question.  

Where possible, structural, mechanistic, or other relevant categorization information may be used for construction of the analogous sets for a particular toxicant under consideration for an RfD.  For example, in the current version of the system, this is most developed for the uncertainty factor for interspecies projection.  In this case, distributions are adjusted for the composition and number of species with data that were used in choosing the “most sensitive” species for assessment of the LOAEL or NOAEL or BMD.  Where the “most sensitive” species has been selected based on data from four or five species, this clearly represents a more “conservative” projection, and the central estimate and distribution of likely human relative potencies is adjusted accordingly based on analogous cases where the most sensitive species has been selected from a similarly sized data base for the chemicals in the analogous reference set.  Other sources of information for forming analogous sets could include types of elimination mechanisms for pharmacokinetic data (e.g., specific CYP enzymes), or anatomical site and putative mode of action for pharmacodynamic data.

Briefly, after preliminary estimates of animal ED50’s for minimally adverse effects from LOAELs (where available),
 the “straw man” system applies the following distributions for various uncertainty factors: 

· Distributions for the subchronic/chronic data projection (where needed) derived from an analysis by Baird et al.5 of subchronic to chronic NOAELs from Weil and McCollister6 and Nessel et al.7 These data included 61 sets of comparative experiments involving 51 different toxicants.

· Distributions for the effects of incomplete data  (missing either a reproductive study or a chronic toxicity study) in deriving a NOAEL, based on distributions inferred from a set of 35 pesticides with complete data bases analyzed by Evans and Baird.8  

· Lognormal distributions for interspecies projection based on observations of human maximum tolerated doses for 61 anti-cancer agents in relation to animal predictor data.9
· Distributions of the extent of human interindividual variability based on our collection of both pharmacokinetic and pharmacodynamic interindividual variability data. 

These latter data come primarily from studies of pharmaceuticals in clinical settings (see, for example, the listings in Tables 4.6 and 4.7), although there are also some epidemiological observations of pharmacodynamic parameters based on biomarkers of internal exposure for methylmercury and cadmium.  The interindividual variability in the database is summarized in Tables 4.2 and 4.3 for different types of kinetic and dynamic parameters, respectively.  The primary unit in this table is the standard deviation of the common (base 10) logarithms of the parameter values, as most of the data are well described by lognormal distributions.10  Table 4.4 provides a handy key to translation of these values into other terms that may be more familiar to the reader, and which relate to the benchmark 95% percentile/median ratios highlighted in the IPCS guidance.  

Overall, it can be seen in Tables 4.2 and 4.3 that we have interindividual variability observations for 471 “data groups” (where a “data group” is a measurement of a particular parameter for a particular chemical, sometimes including a combination of the variability observed in several studies as described previously11).11 of these data groups were for uptake parameters, 363 for pharmacokinetic parameters, and 97 parameters that include some pharmacodynamic variability information.  The current database reflects a modest expansion from the database used in the latest previous report,2 where there were a total of 447 data groups, including 93 with pharmacodynamic variability information.  The most influential addition was a set of observations on two levels of nausea symptoms (simple nausea, and nausea + vomiting) in relation to clinical exposure to copper solutions.12 These latter data led to some overall reduction in estimates of the amount of pharmacodynamic variability for systemic effects of oral toxicant exposures.  

Given the raw observations, the straw man system utilized a regression-like procedure to construct a weighted allocation of interindividual variability among various steps in the process from toxicant exposure through to the production of biological responses of various degrees of severity, and for broad categories of organ systems.  In general the data indicated that local tissue responses, responses rated relatively mild on a severity scale, and responses of the immune system showed greater pharmacodynamic variability than other responses.  Table 4.5 shows the allocation of variability among the pharmacodynamic steps for non-immune systemic responses using the most recent updated data.  For the current analysis, estimates of pharmacokinetic variability for comparison will be drawn from observations of AUC and Cmax parameters for chronic and acute responses, respectively (see next section).

A final step in the “straw man” procedure is the combination of information about the uncertainty in all of the factors used for particular RfDs (including uncertainty in the interindividual variability, discussed in more detail below) in Monte Carlo simulations of the uncertainty in risk as a function of dose, assuming that simple unimodal unbounded lognormal distributions describe the overall population variability in thresholds for responses for mild adverse effects (this is essentially a log-probit projection of risk).  The Monte Carol simulation runs are done in Excel spreadsheets, and results summarized as the average of three parallel runs of 5000 trials each (each trial consisting of a selection of random values from the distributions defined for each uncertainty factor contributing to an RfD, and calculation of expected risks as a function of dose).  These results are then compared with our hypothesized “straw man” risk criterion—that there should be 95% confidence that the projected risks for the general population from exposure at the RfD should be less than an incidence of 1/100,000 for mild adverse effects.  The same system can be used to produce estimates predicated on a number of other potential risk management criteria, including the arithmetic mean “expected value” of the incidence of mild adverse responses above and below current RfD levels. 

It should be understood that these risk projections carry great uncertainty.  It is likely that in many cases the population has subgroups (both genetic, developmental, and from other origins) that may contribute variability that is not fully captured in the observations of small relatively healthy subgroups that form the basis of our data.  This could cause the actual variability to be larger and of somewhat different statistical form than our simple unimodal lognormal estimates, leading to some tendency to underestimate population risks.  On the other hand, there has been no effort in the current system to subtract variance due to experimental measurement errors from the observed spread of the basic pharmacokinetic and pharmacodynamic variability observations.  Other things being equal, this would tend to cause our interindividual variability estimates to be larger than the real variation among people for these parameters for the generally restricted populations that were studied.  This leads to a potential for overestimation of real variability and therefore an overestimation of expected incidences of adverse effects.  It is not clear which of these partially offsetting sources of uncertainty is greater, and thus it is not clear whether the net result is likely to be an over- or an under-prediction of real interindividual variability.

Finally, some have observed that the sets of drugs that gave rise to our estimates of variability may not be perfectly analogous to sets of environmental chemicals that are the subjects of risk assessment efforts by environmental and food regulatory authorities.  The drugs may tend to be more water soluble than the environmental chemicals, and drug testing, particularly for the responses that give rise to our pharmacodynamic variability estimates, undoubtedly was carried out at larger doses in relation to effect levels than would generally be the case for environmental exposures.  These considerations produce some additional uncertainty that is not quantified in our system.  However we would suggest that the set of interindividual variability observations we have compiled and analyzed provides a much closer analogy to the desired information for untested environmental chemicals than the relatively arbitrary bases for the traditional uncertainty factor for human variability (dating back to the original proposal of a 100-fold safet factor for both interspecies projection and human variability by Lehman and Fitzhugh
), and the pharmacokinetic and pharmacodynamic components that have more recently been postulated.3,4 

Observed Distributions of Interindividual Variability in AUC and Cmax Following Oral Administration

We focus our analysis of pharmacokinetic variability on AUC and Cmax observations because these parameters are reasonable summary estimators of the full pathway from exposure to systemic availability of relevant chemical species for chronic and acute systemic toxicity, respectively. [The AUC is the integrated Area Under the Concentration X Time Curve of the toxicant or drug in the blood, in all cases for our data set normalized to the mg/kg of oral dose.  This is the most frequently used internal dose metric for effects that occur as the result of the gradual buildup of relatively slowly reversible effects from chronic or repeated exposures.  Similarly the Cmax is the maximum blood concentration achieved after a single acute exposure—most often used for effects that occur as the result of a phrarmacodynamic process that quickly proceeds to irreversible damage or is quickly reversed following individual exposures.]   

These parameters are also the ones specifically recommended in the IPCS guidance for assessment of data-derived uncertainty factors for the pharmacokinetic component of interindividual variability in susceptibility. We have not, however, evaluated whether all of our data sets meet the IPCS guidance that the standard error of the mean should be less than 20% of the mean.  To apply this arbitrary cutoff, we believe, would systematically exclude relatively small data sets that happen to indicate particularly large amounts of individual variability, thus biasing the overall estimates.  We deal with the issue of statistical sampling error in our estimates of human variability more explicitly and quantitatively, as described below.

Tables 4.6 and 4.7 show the basic observations in our database of human interindividual variability in AUC and Cmax following oral exposures. Both of these tables are arranged in order of increasing observed variability, measured as log(GSD).  It can be seen from the population information in columns 3-5 of these tables that a minority of the data sets include children under 12, and many have quite limited sample sizes (the minimum size for inclusion in the data base is 5).

In general, as has been noted in prior work,10,11 the log(GSD) observations themselves appear to be approximately lognormally distributed.  This can be seen in simple log probability plots13 of the logs of the log(GSD) values for individual chemicals/drugs (Figure 4.1).  In this type of plot the Z-Score is the inverse of the number of standard deviations above or below the median of a cumulative normal distribution, where the fractile of the distribution for each point is determined only from the order of the data points, using the formula:14
(I – 3/8)/(N + 1/4)




    (4.1)

(The Z-score itself is determined from this fractile of the distribution using the normsinv() command in Microsoft Excel.)  In log probability plots constructed in this way, the correspondence of the points to the fitted line in such plots is a quick qualitative indicator of the fit of the individual data to a lognormal hypothesis, and the intercept and slope of the regression line are estimates of the median and standard deviation of the data as transformed. 

In these data, as in observations analyzed earlier for elimination half-lives2 (the elimination half life is the time it takes for half of the toxicant to be removed from the blood in the terminal phase of exponential elimination from the systemic circulation, usually determined from the final slope of a fitted straight line in a plot of the log of blood concentration vs time), there is a tendency for data groups that include children under 12 to show somewhat more variability than data groups that do not include children.  However, with the limited number of chemicals where these parameters have been measured in groups including children, this suggested increment fails to exert a large or consistent enough effect to reach conventional criteria for statistical significance (Table 4.8).  In other work,15 we have seen consistent statistically significant reductions in clearance and increases in elimination half-lives only for age groups under about 6 months.  Nevertheless, in order to avoid understating the pharmacokinetic portion of the variability (and therefore its significance for risk, relative to pharmacodynamic variability) we choose to include the somewhat expanded estimates of variability derived from the groups with children.  We did this by adding the central estimate of the increment in variability associated with the inclusion of children in the study groups in our central population estimates of the log(GSD)s for the AUC and Cmax parameters.

Basic Inferences for the Split of Lognormal Variance in Interindividual Variability Log(GSD)s Between Pharmacokinetic and Pharmacodynamic Portions of the Pathway from Oral Administration to Biological Responses

The various pharmacokinetic and pharmacodynamic components of interindividual variability in susceptibility act multiplicatively to determine individual susceptibility.  Mathematically, the multiplicative interaction of the components is equivalent to adding their logarithms.  Then, since the variance
 of a sum is the sum of the corresponding variances, the central estimate for the total interindividual variability in susceptibility for a median chronic toxicant can be found as the square root of the sum of the lognormal variances from the pharmacokinetic component from those listed in Table 4.8 and the three pharmacodynamic components whose central estimates are given in the second column of numbers in Table 4.5:

Log(GSD) for overall interindividual variability in susceptibility for a non-immune systemic adverse effect at the lowest adverse severity level =

{[Log(GSD)]2 for pharmacokinetics (that is, AUC) + Log(GSD)]2 for Active Site      (4.2)

Availability/General Systemic Availability + Log(GSD)]2 for an Nonimmune Physiological Parameter Change/Active Site Availability + Log(GSD)]2 for Differences in the Amount of Physiological Parameter Change Needed for a Mild-Severity Non-Immune Systemic Effect}.5

= {PK--0.2022 + PD-- 0.0992 + 0.1992 +0.2382}.5 = 0.383

For this case, therefore, from the same calculations as are shown in Table 4.4, the ratio of the 95th/50th percentile individual sensitivity would be 

10(1.645*0.383) = 4.3                                                                                                                   (4.3)

For the pharmacodynamic steps alone, the central estimate for the interindividual log(GSD) is

{0.0992 + 0.1992 +0.2382}.5 = 0.326



 (4.4)

The percentage of the overall variance attributable to the pharmacokinetic portion of the pathway is

100*0.2022/{0.2022 + 0.0992 + 0.1992 +0.2382} = 27.8


    (4.5)

Thus, if one wished to retain an overall factor for interindividual variability factor of 10-fold, and make a split between two multiplicative components according to the central estimates of pharmacokinetic and pharmacodynamic variance derived here, then the factor allocated to pharmacokinetics would be

100.278  = 1.9 fold




    (4.6)

and the complementary factor allocated to pharmacodynamics would be

100.722  = 5.3 fold.




    (4.7)

Thus, even without considering in detail the uncertainties in our estimates of the various components of overall variability in susceptibility, some adjustment away form the even split between pharmacokinetic and pharmacodynamic components of interindividual variability in the IPCS guidance is indicated.  This analysis could require modification in cases where there are appreciable dose-dependent changes in absorption, transport, or elimination of a specific chemical in the range of concentrations covered in the underlying pharmacokinetic data.

Uncertainties in Current Estimates of Pharmacokinetic and Pharmacodynamic Variability

In decision theory the “value” of a particular piece of new information (such as data on the actual human pharmacokinetic variability for a particular compound) depends on the “baseline” or “prior” uncertainty in the measured parameter in the absence of the added information.  Therefore in order to understand the improvement for RfD decision-making that is potentially available from improved information about pharmacokinetic variability for specific compounds, we need to have a quantitative baseline assessment of how much uncertainty is likely to be present for an untested chemical in the absence of any compound-specific pharmacokinetic measurements.

As described previously, our “straw man” simulations of risk at the RfD are based on random draws from the data base of pharmacokinetic and pharmacodynamic variability components.  The lognormal spread of each of these distributions of Log(GSD)s represents our estimate of the likelihood that the true value of the pharmacokinetic or pharmacodynamic variability will differ from the median estimate by various amounts.

We have as a starting point our collection (Tables 4.6 and 4.7, and Figure 4.1) of the observed pharmacokinetic interindividual variabilities for a variety of drugs that, provisionally, we will treat as representative of the universe of environmental chemicals for which we would like to derive RfDs, analogous “Acceptable Daily Intake” (ADI) estimates, and similar guidance values.  However those observations are far from ideal representations of the underlying truth about the pharmacokinetic variability for those specific chemicals, or the real chemical-to-chemical differences in that variability for chemicals in general.  The measurements are based on limited sample sizes, the groups of people studied differ in their representativeness of the overall human population, and the procedures for estimating Cmax and AUC variability from individual blood concentration X time profile data undoubtedly include some imperfections.  All of these sources of random (and possibly some systematic) error for the pharmacokinetic variability estimates for individual chemicals tend to spread the individual chemical values apart from one another to a greater extent than would be observed if perfect information for the same chemicals was available, (even if they would not be expected to affect the central tendency).  This artifactual spreading, however, does not affect the real underlying differences among chemicals in individual variability, and therefore the real differences among chemicals in risks at doses that are very much lower than the ED50s for specific effects.  To put it simply, if chemicals are really not very different in their actual human PK or PD interindividual variability, then specific information about the variability for a particular chemical cannot reduce very much the spread of our errors in estimates of variability for individual compounds.

We can, at least, make a preliminary analysis to allow us to offset the likely effects of small sample sizes on the spread of pharmacokinetic and pharmacodynamic variability observations for individual chemicals.  The pharmacodynamic portion of this analysis is taken from our earlier “straw man” effort.2 Briefly, we first calculated the uncertainty in the estimated variability for each pharmacodynamic observation by a cross-validation technique:

· We re-estimated the parameters in our overall variability allocation model excluding the data point whose uncertainty was being assessed,

· We then calculated the square of the deviation between the log[log(GSD)] predicted for that data point and the actual observation

· Finally, we did a linear regression analysis of this “observed” variance vs. the variance that would be predicted based on simple sampling error,
 resulting in:

Observed variance = 0.0259 (+ 0.0092 standard error) + 3.05*Statistically Predicted Variance (4.8)

Where 0.0259 and 3.05 are the intercept and slope, respectively, of the regression line found in the analysis described in the final bullet above.  The intercept of this relationship (at zero “Statistically Predicted Variance”) is essentially an estimate of the variance at infinite sample size.  In our modeling, we therefore represent the standard deviation of our lognormal distribution of overall pharmacodynamic variation as having a median log(GSD) of 0.326 (from the previous section) and an uncertainty corresponding to a standard deviation of the log[log(GSD)] of the square root of 0.0259 = 0.161.  

Unfortunately, when we applied this same technique to the AUC and Cmax pharmacokinetic data we did not obtain a central estimate for the intercept that was greater than zero.  We did obtain an upper 95% confidence limit for the intercept of 0.164.  This is comparable to the central estimate of our uncertainty for the pharmacodynamic variability parameters.  We will use this upper confidence limit value in our sensitivity analysis for our final results.  

For our central estimate of real chemical-to-chemical variability in pharmacokinetic parameters we reverted to an older technique in which we plotted the data in groups, and took the variance observed in the group with the strongest data (the 12 observations with the largest sample size) as representing our best judgment of the variation in PK variability estimates that would remain even if the variability data were based on infinite-sized samples.  The data, plotted in Figure 4.2, seem to support the suspicion that a large portion of the chemical-to-chemical variation in measured log(GSD)s may be associated with relatively low sample sizes and associated large statistical sampling errors.  Overall, the average variance seen for the 12 observations with the largest sample sizes led us to central estimate of the uncertainty in pharmacokinetic variability corresponding to a standard deviation of 0.092 in the log[log(GSD)]s for this parameter.  To show the effects of assuming a larger amount of uncertainty that is still not incompatible with the data, we also do parallel calculations assuming a value of 0.164 for this parameter, as derived from the upper confidence limit from the simple observed variance vs. expected sampling error variance regression analysis.  Table 4.9 summarizes some percentiles of the uncertainty distribution for pharmacokinetic variability using these two estimates, and shows a similar uncertainty distribution for the pharmacodynamic variability for comparison.  The numbers in the second and third columns of this table are Log(GSD)s for pharmacokinetic variability under the central estimate vs upper confidence limit assumptions for the true spread of chemical-to-chemical differences in PK variability.  For example, under the central estimate log[Log(GSD)] = 0.092 uncertainty assumption, the 95th percentile chemical would have a Log(GSD) for pharmacokinetic variability of .287.  Under the high-uncertainty-estimate assumption, log[Log(GSD)] = 0.092, the 95th percentile chemical would have a Log(GSD) for pharmacokinetic variability of 0.376.

Clarification of the uncertainties in real chemical-to-chemical pharmacokinetic variability apparent in this analysis will need to await compilation of a more extensive data base of AUC and Cmax variability measurements based on larger and perhaps more diverse samples of people.  For the analysis shown below, however, we utilize both a central estimate of 0.092 and an upper confidence limit of 0.164 for the standard deviation in the log[Log(GSD)] for the uncertainty in pharmacokinetic variability to show the sensitivity of the results to this parameter.

Effects of Perfect Knowledge of Overall and Component Interindividual Variability on Doses Needed to Achieve the “Straw Man” Protection Goal

There is no easy formula for evaluating the desirability or appropriateness of specific recipes for data-derived uncertainty factors in isolation from the operation of the rest of the system for setting RfDs.  Until recently, the official definition of the RfD has been 

“An estimate, with uncertainty spanning perhaps an order of magnitude, of the dose that is expected to be without adverse effects even if exposure is continued over a lifetime.”.

Because of the quantitative vagueness of this definition it is simply impossible to evaluate the extent to which the current system of uncertainty factors achieves any specific interpretation of its risk goal, or how the IPCS proposals for data-derived uncertainty factors for pharmacokinetic variability would modify the stystem’s performance in protecting against specific degrees of risk for the ensemble of RfD chemicals with different kinds and quality of available toxicological data.

Therefore this section first develops a context for evaluating the performance of the interindividual variability factor by developing updated estimates of the performance of the system as a whole.  As one plausible social policy benchmark for this process we use the “straw man” protection goal that we articulated in earlier work2—for lifetime continuous daily exposure at the RfD there should be 95% confidence that there will be no more than a 1/100,000 incidence of mild adverse effects.  For testing purposes, we evaluate the same set of 18 randomly chosen sample RfDs as was used in our earlier work.  As before, we use Monte Carlo simulations of the effects of uncertainties in all of the factors that appeared as numerical uncertainty factors in the corresponding analyses published in EPA’s IRIS database, including database and modifying factors where they were used.  

In all cases the data presented in the summary tables (Tables 4.10 and 4.11) represent averages from Monte Carlo simulation runs of 5000 trials each.  On each trial, random values are chosen from all of the distributions representing the various uncertainty factors that were included in the derivation of each RfD.  The distribution of results on each set of 5000 trials represents the confidence distribution for the risk results.  For example, the 95th percentile of the estimated risk at the RfD is defined as the 250th highest among the 5000 values for the predicted population incidence of moderate-severity adverse effects (assuming, on each trial, a lognormal distribution of individual thresholds for response defined by the combined effects of pharmacokinetic and pharmacodynamic variability).

One important difference from the procedure used in the earlier work2 is that for the present simulations we separated the uncertainties in the human interindividual variability components representing pharmacokinetics and pharmacodynamics.  This has the effect, for example, of allowing a randomly chosen high value for the pharmacodynamic variability component to be associated with a randomly chosen low realization for pharmacokinetic variability.  The procedure used in earlier work2 —deriving  a global estimate of human interindividual variability and applying to it a global estimate of uncertainty derived from an analysis of uncertainty in the dynamic parameters—inadvertently treated the extent of kinetic and dynamic variability as highly correlated.  Because we know of no reason why people with greater susceptibility due to dynamic factors should also have systematically greater AUCs or Cmax values per unit dose, we think it is more appropriate to model the kinetic and dynamic variability components as uncorrelated.  Treating the two variability components as uncorrelated has the effect of greatly reducing the estimated frequency of extremely high values of overall human interindividual variability in susceptibility and corresponding risks at low RfD exposure levels.

Table 4.10 shows the results of these simulations for the base-case estimates of variability and uncertainties in each source of variability (second and fourth columns of Table 4.9).  The results for the different chemicals are presented in the same order as was used for Table 4.1 to facilitate comparison of results for cases where different uncertainty factors were used as components of the RfDs.  

In addition to the findings relative to the “straw man” risk management criterion in the final column of Table 4.10, other columns show a few other expectations for the risk distributions at RfD exposure levels.  The differences between median (50th percentile), arithmetic mean risks (the average of all the 5000 projections risks at the RfD in each simulation), and the 95th percentile risks emphasize the great uncertainty in these projections, which derives in part from projections over several standard deviations of hypothesized perfectly lognormal distributions of sensitivity from estimated human ED50 levels to RfD exposure levels. 

Despite the great uncertainties in individual risk projections for particular agents, these calculations provide a consistent framework for judging the likely relative protection performance of the current RfD system as a whole.  The results in the final column of Table 4.10 indicate that current RfDs may generally come within several fold of meeting our “straw man” risk criterion.  The final column of results has nine values under 3 and nine values over 3.  Therefore an approximate 3-fold reduction is projected to be needed to make the median RfD meet the straw man criterion.  Similarly a 6-fold reduction is projected to bring all but one of the 18 RfDs within the same standard.

With this background, Table 4.11 shows the changes in RfDs relative to the straw man criterion that would be expected to result from various changes to the “baseline” estimates of uncertainty in PK and PD variability (refer back to Table 4.9 columns 2 and 4 for the quantitative definition of the “baseline”).  The first column of numbers recapitulates the baseline findings from Table 4.10.  Then, the second column of numbers shows the effects of increasing the baseline uncertainty in PK variability to our estimated 95% upper confidence limit as derived in the previous section (third column of Table 4.9).  It can be seen that this makes a modest difference—increasing the adjustment needed to reach the straw man criterion by about 20% for the two cases highlighted at the bottom of the table.  Similarly, the third column of numbers shows the expected effects of perfect information on PK variability--holding the central estimate of PK variability constant, but assuming that a wonderful study has reduced the uncertainty in PK variability to zero from the 0.092 baseline estimate.  In this case the changes in the expected changes to meet the straw man criterion are small enough, relative to the base case, that one can see the effects of stochastic uncertainties in the simulations for the different RfDs.  Overall, averaging the multiplicative changes for all the chemicals relative to the baseline, the geometric mean difference is about 5% [100*(1-2.43/2.54)].  Relative to the expanded baseline corresponding to the upper confidence limit of PK uncertainty, the geometric mean for the perfect PK information column indicates a change in the distance between RfDs and the straw man criterion comes to about 20% [100*(1‑2.43/3.03].  By contrast, the fourth column of numbers shows the expected effects of perfect information (0 uncertainty) for PD variability amount to a little more than a three-fold reduction in the amount of adjustment calculated to be needed to meet the “straw man” risk management criterion.  The last column, showing the effects of perfect information for both PK and PD variability, indicates approximately a 10% further change in the dose expected to reach the comparative benchmark risk management goal.

All of the results in Table 4.11 presume that the research that yields improved estimates of PK variability reduces uncertainty, but converges on the same value derived for the central estimate of PK variability for all compounds.  Other model calculations have been made based on alternative possibilities in which the hypothetical new research is assumed to have produced estimates of pharmacokinetic variability that correspond to either a 5th percentile or a 90th percentile chemical, respectively.  This range of plausible outcomes from pharmacokinetic measurements leads to about a two-fold overall difference in the RfD adjustments needed to meet the straw man risk management criterion (data not shown—detailed results available on request). 

With great reluctance I have tentatively deleted Table 12 and the associated discussion of the results there.  This table does important sensitivity analyses, and took a great deal of work to produce, but it is not vital to the main line of the argument.--dh
These results allow us to make comparisons with the changes in allowable dosage that would be indicated under the IPCS guidance.  From calculations similar to those in Table 4.4 our central estimate log(GSD)s for PK variability of 0.202, would correspond to a ratio of the 95th to 50th percentile values of 2.15.  If this factor were substituted for the 3.16-fold default factor for pharmacokinetic interindividual variability, it would result in an increase in allowable RfD/ADI doses of about 47%, (3.16/2.15 = 1.47).  By contrast, the results in Table 4.11 indicate that, depending on the detailed specification of the risk management goal, the enhanced information on pharmacokinetic variability should lead to central-estimate (geometric mean) adjustments in allowable dosage of about +5% [that is, 100*(2.54/2.43 -1)], relative to the case where there is no compound-specific information about pharmacokinetic interindividual variability [as much as a +54% adjustment would be indicated if the new “perfect information” leads to a revised estimate of human interindividual variability as low as a Log(GSD) of .1, rather than the central estimate of 0.202 for the median chemical].

In conclusion, we have shown how available data can be used to craft a quantitative analysis of the extent to which improved data on pharmacokinetic or pharmacodynamic variability could reasonably be recognized in changes in reference doses that could be regarded as equally protective in the light of some quantitatively specified social policy criterion.  From the current data, it appears that the equal split between pharmacokinetic and pharmacodynamic interindividual variability components overstates the relative importance of pharmacokinetic variability and could lead to larger adjustments for “data derived uncertainty factors” than are likely to be warranted by the changes in risks that are projected using our framework.

Lessons for the Derivation of Single Point Factors to Represent Overall Interindividual Variability and Pharmacokinetic/Pharmacodynamic Components

It is desirable to take one further step to make the kinds of assessments that we illustrate here more accessible to working risk assessors in the field.  We don’t imagine that, at least in the near term, many risk assessment agencies will want to make the investment necessary to become comfortable in doing the combined analyses of variability and uncertainty that we have pursued here—although we have taken care to develop our system in such a way that no more software is required than simple Excel spreadsheets.  In this section we use the results of our probabilistic modeling for 18 RfDs to derive a series of simple formulae that allows approximate derivation of analogous results for other RfDs.  In the course of this, we derive approximate guidance for interim alterations of the traditional single-point uncertainty factors.

Figure 4.3 shows a plot of our prime dependent variable—the dose reduction needed to change current RfDs into values that are expected to meet the “straw man” 1E-5 risk with 95% confidence criterion—vs. the overall uncertainty factor assigned by EPA in the light of the information available for each RfD chemical.  The data are plotted separately for RfDs based on observations of quantal endpoints (where we made dose adjustments for the animal data corresponding to our estimates of the differences between LOAEL/NOAEL and ED50 levels) vs. RfDs based on observations of continuous endpoints (where no such adjustments were made, because the levels were judged to already reflect toxicologically significant changes in average individuals in the exposed groups of animals).  

As was observed previously2 it can be seen in Figure 4.3 that there is some tendency for the RfDs that incorporate larger overall uncertainty factors to require less multiplicative reduction to meet the straw man criterion than RfDs where smaller uncertainty factors were deemed necessary.  This is apparently because the uncertainty factors that are added above the traditional 10-fold factors for interspecies projection and interindividual variability carry some added “conservatism” beyond what is assessed to be strictly needed to offset the added uncertainty of the projections.

A multiple regression analysis of these same data (Table 4.12) found three statistically significant determinants of the differences among RfDs in the multiplicative distance from the straw man criterion:

· The quantal vs. continuous nature of the endpoint used to determine the RfD.  RfD’s based on continuous endpoints required 100.414 = about 2.6 fold greater reductions, other things being equal, to meet the “straw man” criterion.

· The magnitude of the overall uncertainty factor (that is, the combination of all uncertainty factors used in the derivation of the RfD).  Where this was 100, for example, a 100.356 = about 2.27 fold greater reduction would be needed to meet the same risk standard, compared to the cases where the combined uncertainty factors were 1000.

· Where there was no LOAEL available, and our risk inferences needed to be based on more uncertain NOAEL information, an additional factor of 100.76= about 5.75 was required on average for adjustment to the risk standard.

If we apply the regression estimates in Table 4.12 to the case of an RfD based on a quantal endpoint, to which only the two traditional interindividual and interspecies uncertainty factors were applied, and for which an LOAEL was available, we obtain

Log(RfD multiple to meet the “straw man” risk criterion) =


    (4.8)

1.348 –(1 for quantal)*.414 – [2 = log(100) for UF of 100]*.356 = 1.348 -0.414 - 0.712 

= 0.222, implying a multiplicative distance from the straw man criterion of 100.222 = 1.67

For convenience, this factor could be most simply incorporated into current risk assessment practice by changing the traditional 10-fold factor for interindividual variability to 16.7.  Similarly, for an RfD with an overall uncertainty factor of 100, meeting the straw man criterion could be accomplished by changing the traditional uncertainty factor for interindividual variability from 10 to 16.7*100.414 = 43.  For analogous chemicals where an overall uncertainty factor of 1000 would normally be assigned, the replacements for the usual 10-fold interindividual variability uncertainty factor would become 7.4 and 19, for RfDs based on quantal and continuous endpoints, respectively.

It should be understood that no official body has, as yet, adopted the “straw man” risk management standard as its official goal.  However the articulation of numerical guidance in terms of this standard shows how quantitative specification of risk management goals in terms of variability and uncertainty can lead to practical and implementable changes toward more consistency in defining the non-cancer risks that are considered “acceptable” by risk management agencies.  It also allows more natural and quantitatively defensible rules for incorporation of improved quantitative information about risks.  Finally, the same tools allow some, albeit highly uncertain, estimates of the potential health benefits of reductions in population exposures.  These latter estimates are potentially helpful for analyses juxtaposing the benefits and costs of public policy measures to reduce population exposures.

References


1. 
Meek, M.E. et al., Guidelines for application of chemical-specific adjustment factors in dose/concentration-response assessment, Toxicology, 27, 115, 2002.


2. 
Hattis, D., Baird, S., and Goble, R., A straw man proposal for a quantitative definition of the RfD, Drug Chem. Toxicol., 25, 403, 2002.


3. 
Renwick, A.G., Data-derived safety factors for the evaluation of food additives and environmental contaminants, Food Addit. Contam., 10, 275, 1993.


4. 
Renwick, A.G. and Lazarus, N.R., Human variability and noncancer risk assessment — An analysis of the default uncertainty factor, Regul. Toxicol. Pharmacol., 27, 3, 1998.


5. 
Baird, S.J.S. et al., Noncancer risk assessment: a probabilistic alternative to current practice, Human Ecol. Risk Assess., 2, 79, 1996.


6. 
Weil, C.S. and McCollister, D.D., Relationship between short and long-term feeding studies in designing an effective toxicity test, Agr. Food Chem., 11, 486, 1963.


7. 
Nessel, C.S. et al., Subchronic to chronic exposure extrapolation: toxicologic evidence for a reduced uncertainty factor, Human Ecol. Risk Assess., 1, 516, 1995.


8. 
Evans, J.S. and Baird, S.J.S., Accounting for missing data in noncancer risk assessment, Human Ecol. Risk Assess., 4, 291, 1998.


9. 
Price, P.S., Swartout, J.C., and Kennan, R.E., Characterizing inter-species uncertainty using data from studies of anti-neoplastic agents in animals and humans, Human Ecol. Risk Assess., 2005.  [submitted].


10. 
Hattis, D., Banati, P., and Goble, R., Distributions of individual susceptibility among humans for toxic effects.  How much protection does the traditional tenfold factor provide for what fraction of which kinds of chemicals and effects?, Ann. N. Y. Acad. Sci., 895, 286, 1999.


11. 
Hattis, D. et al., Human interindividual variability in parameters related to health risks, Risk Anal., 19, 705, 1999.


12. 
Olivares, M. et al., Nausea threshold in apparently healthy individuals who drink fluids containing graded concentrations of copper, Regul. Toxicol. Pharmacol., 33, 271, 2001.


13. 
Hattis, D. and Burmaster, D.E., Assessment of variability and uncertainty distributions for practical risk analyses, Risk Anal., 14, 713, 1994.


14. 
Cunnane, C., Unbiased plotting positions--A review, J. Hydrol., 37, 205, 1978.


15. 
Hattis, D. et al., Differences in pharmacokinetics between children and adults—II.  Children's variability in drug elimination half-lives and in some parameters needed for physiologically-based pharmacokinetic modeling, Risk Anal., 23, 117, 2003.


16. 
Bauer, L.A. et al., Diurnal variation in valproic acid clearance, Clin. Pharmacol. Ther., 35, 505, 1984.


17. 
Ehrnebo, M., Nilsson, S.O., and Boreus, L.O., Pharmacokinetics of ampicillin and its prodrugs bacampicillin and pivampicillin in man, J. Pharmacokinet. Biop., 7, 429, 1979.


18. 
Mitchell, B.G. et al., Mexiletine disposition: individual variation in response to urine acidification and alkalinization, Br. J. Clin. Pharmacol., 16, 281, 1983.


19. 
Bragonier, R. and Brown, N.M., The pharmacokinetics and toxicity of once-daily tobramycin therapy in children with cystic fibrosis, J. Antimicrob. Chemoth., 42, 103, 1998.


20. 
Allen, J.H. et al., Steady-state salicylate plasma and urinary metabolite concentrations from plain, buffered, or enteric-coated aspirin, Clin. Pharm., 2, 64, 1983.


21. 
Swain, A.F. et al., Pharmacokinetic observations on dapsone in dermatitis herpetiformis, Br. J. Dermatol., 108, 91, 1983.


22. 
Ahlmen, J. and Brorson, J.E., Pharmacokinetics of trimethoprim given in single daily doses for three days, Scand. J. Infect. Dis., 14, 143, 1982.


23. 
Lonnerholm, G., Grahnen, A., and Lindstrom, B., Steady-state kinetics of sustained-release phenylpropanolamine, Int. J. Clin. Pharm. Th., 22, 39, 1984.


24. 
Noguchi, H., Tokuma, Y., and Tamura, Y., Pharmacokinetics of prifinium bromide in healthy volunteers, Int. J. Clin. Pharm. Th., 21, 213, 1983.


25. 
Jochemsen, R. et al., Comparative pharmacokinetics of brotizolam and triazolam in healthy subjects, Br. J. Clin. Pharmacol., 16, 291S, 1983.


26. 
Palma-Aguirre, J.A. et al., Bioavailability of oral cyclosporine in healthy Mexican volunteers: evidence for interethnic variability, J. Clin. Pharmacol., 37, 630, 1997.


27. 
Greenblatt, D.J. et al., Pharmacokinetics and bioavailability of intravenous, intramuscular, and oral lorazepam in humans, J. Pharm. Sci., 68, 57, 1979.


28. 
Hayball, P.J. et al., The influence of renal function on the enantioselective pharmacokinetics and pharmacodynamics of ketoprofen in patients with rheumatoid arthritis, Br. J. Pharmacol., 36, 185, 1993.


29. 
Hockings, N., Ajayi, A.A., and Reid, J.L., Age and the pharmacokinetics of angiotensin converting enzyme inhibitors enalapril and enalaprilat, Br. J. Clin. Pharmacol., 21, 341, 1986.


30. 
von Stetten, V.O. et al., Comparative studies on biologic availability and pharmacokinetics of bromazepam in tablets, Arzneimittelforschung, 33, 1699, 1983.  [German].


31. 
Gram, L.F. and Overo, K.F., First-pass metabolism of nortriptyline in man, Clin. Pharmacol. Ther., 18, 305, 1975.


32. 
Redolfi, A., Borgogelli, E., and Lodola, E., Blood level of cimetidine in relation to age, Eur. J. Clin. Pharmacol., 15, 257, 1979.


33. 
Lares-Asseff, I. et al., Pharmacokinetics of metronidazole in severely malnourished and nutritionally rehabilitated children, Clin. Pharmacol. Ther., 51, 42, 1992.


34. 
Kirch, W., Hutt, H.J., and Planitz, V., Pharmacodynamic action and pharmacokinetics of moxonidine after single oral administration in hypertension patients, J. Clin. Pharmacol., 30, 1088, 1990.


35. 
Hilger, R.A. et al., Investigation of bioavailability and pharmacokinetics of treosulfan capsules in patients with relapsed ovarian cancer, Cancer Chemoth. Pharm., 45, 483, 2000.


36. 
Ross-Lee, L.M. et al., Single-dose pharmacokinetics of metoclopramide, Eur. J. Clin. Pharmacol., 20, 465, 1981.


37. 
Pynnonen, S. et al., Carbamazepine and its 10,11-epoxide in children and adults with epilepsy, Eur. J. Clin. Pharmacol., 11, 129, 1977.


38. 
Carrillo, J.A. et al., Effects of caffeine withdrawal from the diet on the metabolism of clozapine in schizophrenic patients, J. Clin. Psychopharm., 18, 311, 1998.


39. 
du Souich, P. et al., Mechanisms of nonlinear disposition kinetics of sulfamethazine, Clin. Pharmacol. Ther., 25, 172, 1979.


40. 
Altamura, A.C. et al., Age-related differences in kinetics and side-effects of viloxazine in man and their clinical implications, Psychopharmacology, 81, 281, 1983.


41. 
Johnson, C.E. et al., Pharmacokinetics and pharmacodynamics of nifedipine in children with bronchopulmonary dysplasia and pulmonary hypertension, Pediatr. Res., 29, 500, 1991.


42. 
Chaplin, M.D. et al., Correlation of flunisolide plasma levels to eosinopenic response in humans, J. Allergy Clin. Immun., 65, 445, 1980.


43. 
Rane, A. et al., Relation between plasma concentration of indomethacin and its effect on prostaglandin synthesis and platelet aggregation in man, Clin. Pharmacol. Ther., 23, 658, 1978.


44. 
Fourtillan, J.B. et al., Pharmokinetics of oral timolol studied by mass fragmantology, Eur. J. Clin. Pharmacol., 19, 193, 1981.


45. 
Levy, M. et al., Captopril pharmacokinetics, blood pressure response and plasma renin activity in normotensive children with renal scarring, Dev. Pharmacol. Therap., 16, 185, 1991.


46. 
Kearns, G. et al., Pharmacokinetics of metoclopramide in neonates, J. Clin. Pharmacol., 38, 122, 1998.


47. 
Liedholm, H. et al., Pharmacokinetics of dixyrazine: low bioavailability, improved by food intake, Drug Nutr. Interact., 3, 87, 1985.


48. 
Masimirembwa, C.M., Naik, Y.S., and Hasler, J.A., The effect of chloroquine on the pharmacokinetics and metabolism of praziquantel in rats and in humans, Biopharm. Drug Dispos., 15, 33, 1994.


49. 
Reitberg, D.P., Bernhard, H., and Schentag, J.L., Alteration of theophylline clearance and half-life by cimetidine in normal volunteers, Ann. Int. Med., 95, 582, 1981.


50. 
Kleinbloesem, C.H. et al., Nifedipine: kinetics and dynamids in healthy subjects, Clin. Pharmacol. Ther., 35, 742, 1984.


51. 
Winstanley, P. et al., Chlorproguanil/dapsone for uncomplicated plasmodium falciparum malaria in young children: pharmacokinetics and therapeutic range, T. Roy. Soc. Trop. Med. H., 91, 322, 1997.


52. 
Cheeseman, K.H. et al., Biokinetics in humans of RRR-alpha-tocopherol: the free phenol, acetate ester, and succinate ester forms of Vitamin E, Free Radical Bio. Med., 19, 591, 1995.


53. 
Karl, H.W. et al., Pharmacokinetics of oral triazolam in children, J. Clin. Psychopharm., 17, 169, 1997.


54. 
Midha, K.K. et al., Comparative bioavailability of a new commercial tablet formulation and two lots of a reference formulation of haloperidol, J. Pharm. Sci., 78, 443, 1989.


55. 
Kerger, B.D. et al., Ingestion of chromium(VI) in drinking water by human volunteers: absorption, distribution, and excretion of single and repeated doses, J. Toxicol. Environ. Health A., 50, 67, 1997.



Table 4.1.  Details of the Uncertainty Factors Used for the Sample RfD’s and Summary Toxicological Observations

	
	Animal/human (UFA)
	Human interindividual (UFH)
	Subchronic/chronic (UFS)
	LOAEL/NOAEL (UFL)
	Modifying Factor (MF)
	Database (D)
	Comments, and Classification of Endpoint as Quantal vs. Continuous

	4-(2,4-Dichloro-phenoxy)butyric acid
	10
	10
	10
	1
	1
	1
	LOAEL is for frank effect--internal hemorrhage and mortality—Quantal.

	Tridiphane
	10
	10
	1
	1
	1
	1
	Decreased fertility and body weight in dams in 2-generation repro study--Continuous

	Sodium azide
	10
	10
	10
	1
	1
	1
	Clinical signs (hunched posture) and reduced body weight--Continuous 

	S-Ethyl dipropylthiocarbamate
	10
	10
	1
	1
	1
	1
	Degenerative cardiomyopathy incidence—Quantal

	1,2,4,5-Tetrachlorobenzene
	10
	10
	10
	1
	1
	1
	Incidence and severity of kidney lesions—Quantal

	Ethephon
	1
	10
	1
	10
	1
	1
	Significant excess plasma cholinesterase inhibition--Continuous

	Tetraethyl-dithiopyrophosphate
	10
	10
	10
	1
	1
	1
	Reduced Plasma and RBC cholinesterase activity--Continuous

	2,4,6-Trinitrotoluene 
	10
	10
	3?
	3?
	1
	1
	Liver toxicity--mild at LOEL (hepatic swelling and hepatocytomegaly) --Continuous

	Butyl benzyl phthalate
	10
	10
	10
	1
	1
	1
	Increased liver/body weight and liver/brain weight--Continuous

	Octabromodiphenyl ether
	10
	10
	10
	1
	1
	1
	Induction of liver enzymes; liver histopathology—Quantal

	Metolachlor
	10
	10
	1
	1
	1
	1
	In 2 year rat feeding study LEL of 150 based on decreased body weight gain.  However in a 2-generation rat repro study a LEL of 50 observed--reduced pup weights--Continuous

	Dichloromethane
	10
	10
	1
	1
	1
	1
	Liver toxicity (abnormal histology) in rats following drinking water exposure--Continuous

	Acetophenone
	10
	10
	10
	1
	1
	3
	No effects found.  The extra factor of 3 resulted from the "lack of important reproductive toxicity data".—Quantal.

	Nickel, soluble salts
	10
	10
	1
	1
	1
	3
	Body weight reduction.  Also significantly higher heart to body weight ratios—Continuous. An additional uncertainty factor of 3 is used to account for inadequacies in the reproductive studies.

	Methoxychlor
	10
	10
	1
	1
	1
	10
	Observed maternal toxicity was excessive loss of litters in the mid and high dose groups and significant decreases in body weight gain.  A high incidence of lung agenesis was observed in the fetuses "from all dose groups".  An additional UF of 10 was used to account for the poor quality of the critical study and for the incompleteness of the data base on chronic toxicity. Risk projection based on rat LEL 25 NOAEL 10 (reduced body weight gain, increased postimplantation loss, decreased number of live fetuses per dam)—Continuous based on reduced bodyweight gain.

	Acetochlor
	10
	10
	1
	1
	1
	1
	Systemic toxicity included excessive salivation, abnormal shaking of the head, increase in alaninine aminotransfrase and some other enzymes, kidney interstitial nephritis and chronic vasculitis, hypospermia--Continuous

	Dacthal
	10
	10
	1
	1
	1
	1
	Increased incidence and severity of lung lesions (not statistically significant at LOEL of 10).  Also dose related increase in the incidence and severity of hepatocytic hypertrop[hy; nephropathy—Quantal.

	Methyl methacrylate
	3
	10
	1
	1
	1
	3
	No detected effect leads to classification as Quantal.  Some increased kidney weight/body weight observed at the assigned NOEL--might have been considered a LOEL.


Table 4.2.  Summary of Unweighted Log(GSD) Variability Observations for Different Types of Uptake and Pharmacokinetic Parameters

	Parameter Type
	Oral
	IV
	Inhaled
	Other Routes
	All Routes + Route-Nonspecific

	Blood concentration for toxicant
	0.322

(3)a

0.295-0.351b
	
	
	
	0.322

(3)

0.295-0.351

	Body weight (adults only)
	
	
	
	
	0.086

(2)

0.065-0.113

	Contact rate/body weight
	0.299

(2)

0.227-0.393
	
	0.090

(3)

0.059-0.137
	0.168

(1)
	0.149

(6)

0.066-0.336

	Absorbed dose/body weight
	
	
	0.156

(1)
	0.166

(2)

0.130-0.211
	0.162

(3)

0.136-0.194

	Volume of Distribution/body weight
	
	
	
	
	0.127

(55)

0.058-0.277

	Volume of Distribution with no control for body weight
	
	
	
	
	0.109

(5)

0.070-0.170

	Cmax/(dose/body weight)
	0.155

(29)

0.068-0.356
	0.121

(3)

0.062-0.237
	0.071

(1)
	0.176

(2)

0.113-0.273
	0.150

(35)

0.067-0.333

	Cmax/dose with no control for body weight
	0.160

(12)

0.074-0.347
	0.150

(2)

0.110-0.204
	0.252

(1)
	0.227

(4)

0.167-0.307
	0.175

(19)

0.090-0.339

	Elimination Half-Life or Clearance/Body Weight
	
	
	
	
	0.131

(147)

0.069-0.251

	Clearance with no control for body weight
	
	
	
	
	0.137

(5)

0.076-0.248

	AUC/(dose/body weight)
	0.167

(37)

0.084-0.335
	0.132

(16)

0.075-0.231
	0.149

(1)
	0.139

(5)

0.061-0.317
	0.154

(59)

0.079-0.301

	AUC/dose with no control for body weight
	0.200

(24)

0.102-0.391
	0.140

(5)

0.080-0.246
	0.354

(2)

0.169-0.742
	0.257

(4)

0.202-0.327
	0.202

(35)

0.104-0.391

	Total uptake and pharmacokinetic observations
	(107)
	(26)
	(8)
	(16)
	(374)c


a Numbers in parentheses are the number of data groups in each category

b Ranges are approximate 10th and 90th percentiles of the individual data sets in each category. 

c Two other pharmacokinetic interindividual variability measurements were of the fraction of an active chemical that was unbound in the plasma.

Table 4.3.  Summary of Unweighted Log(GSD) Variability Observations for Different Types of Parameters Including Pharmacodynamic Variability

	
	GI Tract
	Nervous System
	Respiratory System
	Cardiovascular Renal System + Receptor-Based Effects
	Other (e.g., eye, skin irritation)
	All Effects

	Local (Contact Site) Parameter Change/External Exposure or Dose
	
	
	Acute 0.655

(17)a

0.369-1.16b

Chronic

0.279

(1)
	
	
	Acute 0.655

(17)

0.369-1.16

Chronic

0.279

(1)

	Local (Contact Site) Response/External Exposure or Dose
	0.325

(1--stomach pH)
	
	0.506

(11)

0.194-1.32
	
	0.449

(9)

0.242-0.835
	0.471

(21)

0.213-1.04

	Physiological Parameter Change/Internal Concentration After Systemic Delivery
	
	0.259

(6)

0.200-0.337
	
	0.175

(13)

0.072-0.425
	0.536

(4)

0.330-0.869

(Immune)
	0.235

(23)

0.098-0.566

	Physiological Parameter Change/External Systemic Dose
	
	0.269

(1)
	
	0.276

(1)
	0.195

(1)

(Hepatic)
	0.244

(3)

0.190-0.312

	Response/Blood Level or Internal Concentration After Systemic Delivery
	
	0.247

(11)

0.109-0.561
	
	0.297

(5)

0.108-0.815
	0.060

(1---Immune)

0.502

(1--cataracts)
	0.250

(18)

0.097-0.644

	Response/External Dose (IV or Oral Admin.) Without Large Dosimetric Uncertainty
	
	Oral 0.396 (4)

IV 0.359 (3)

Inhl 0.051 (2)
	
	0.266

(1)
	
	0.245

(10)

0.079-0.761

	Response/External Dose With Large Dosimetric Uncertainty (e.g., workplace epidemiology)
	
	
	1.33

(1--talc lung disease)
	0.684

(3)

0.430-1.09
	
	0.807

(4)

0.456-1.43

	Total Observations Including Pharmacodynamic Variability
	(1)
	(27)
	(30)
	(23)
	(16)
	(97)


a Numbers in parentheses are the number of data groups in each category

b Ranges are approximate 10th and 90th percentiles of the individual data sets in each category. 

Table 4.4.  A scale for Understanding Lognormal Variability--Fold Differences Between Particular Percentiles of Lognormal Distributions
	Log
(GSD)
	Probit slope 
[1/Log
(GSD)]
	Geometric Standard Deviation
	95th/50th Percentile Ratio (1.645 standard deviations)
	99th/50th Percentile Ratio (2.326 standard deviations)

	0.1
	10
	1.26
	1.46 fold
	1.71 fold

	0.2
	5
	1.58
	2.13 fold
	2.92 fold

	0.3
	3.33
	2.0
	3.11 fold
	4.99 fold

	0.4
	2.5
	2.5
	4.55 fold
	8.52 fold

	0.5
	2
	3.2
	6.64 fold
	14.6 fold

	0.6
	1.67
	4.0
	9.70 fold
	24.9 fold

	0.7
	1.43
	5.0
	14.1 fold
	42.5 fold

	0.8
	1.25
	6.3
	20.7 fold
	72.6 fold

	0.9
	1.11
	7.9
	30.2 fold
	124 fold

	1
	1.0
	10.0
	44.1 fold
	212 fold


Table 4.5.  Statistically Weighted Optimum Allocation of Human Interindividual Variability Among Steps in the Causal Process for Different Subsets of the Data Base [table entries are optimized central estimates of Log(GSD)’s for individual steps; the columns represent different subsets of the overall interindividual variability data groups]




 --------------------------------Subset of the Data Base---------------------------------

	
	All 447 data groups, incl direct contact PD observations
	All 365 PK + 54 systemic pharmacodynamic datasets--excluding direct contact PDa
	All 365 PK + 27 systemic nerological pharmacodynamic variability--excluding direct contact PD
	All 365 PK + 23 systemic cardiovascular pharmacodynamic variability--excluding direct contact PD

	Active Site Availability/General Systemic Availability
	0.093
	0.099
	0.092
	0.105

	Non-Immune Physiological Parameter Change/Active Site Availability
	0.205
	0.199
	0.229
	0.184

	Immune Physiological Parameter Change/Active Site Availability
	0.551
	0.548
	no data
	no data

	Reversible Non-Immune Mild Functional Reserve Capacity--Change in Baseline Physiological Parameter Needed to Pass a Criterion of Abnormal Function
	0.338
	0.238
	0.220
	no data

	Non-Immune Moderate Reversible or Irreversible Functional Reserve Capacity
	0.226
	0.230
	0.102
	0.253

	Non-Immune Severe and Irreversible Functional Reserve Capacity
	0.000
	0.000
	0.000
	no data

	Reversible Immune Functional Reserve Capacity
	0.636
	no data
	no data
	no data


a The data set analyzed also included the 11 media intake parameters in each case, although the casual steps covered by these parameters are not relevant to the determination of the uncertainty factors included in the determination of RfDs. 

Table 4.6.  Observations of Interindividual Variability in AUC for Drugs and Other Chemicals in the Current Data Base

	Chemical
	Number of Subjects and Type of Populationa
	Observed Log(GSD)
	Expected Ratio, 95th/Median
	Expected Ratio 97.5th/Median
	Expected Ratio, 99th/Median

	Valproic Acid16
	(10)
	0.056
	1.24
	1.29
	1.35

	Ampicillin17
	(5)
	0.070
	1.30
	1.37
	1.45

	Mexiletine18
	(5)
	0.070
	1.30
	1.37
	1.45

	Tobramycin19
	Children with cystic fibrosis (7)b
	0.080
	1.35
	1.43
	1.53

	Aspirin20 
	(10)
	0.097
	1.44
	1.55
	1.68

	Dapsone21
	7 healthy adults (7)
	0.098
	1.45
	1.56
	1.69

	Trimethoprim22
	(6)
	0.104
	1.48
	1.60
	1.75

	Phenylpropanolamine23
	(7)
	0.109
	1.51
	1.64
	1.79

	Prifinium Bromide24
	(6)
	0.109
	1.51
	1.64
	1.79

	Brotizolam25
	(8)
	0.110
	1.52
	1.64
	1.80

	Cyclosporin26
	Healthy Mexican volunteers (22)
	0.117
	1.56
	1.69
	1.87

	Lorazepam27
	(6)
	0.123
	1.59
	1.74
	1.93

	Ketoprofen--active S enantiomer28
	Older patients with rheumatoid arthritis age 51‑79 (14)
	0.127
	1.62
	1.78
	1.98

	Enalapril29
	9 Young (22-30) and 9 Elderly (66-73) subjects (18)
	0.132
	1.65
	1.81
	2.02

	Bromazepam30
	(10)
	0.134
	1.66
	1.83
	2.05

	Nortriptyline31
	healthy volunteers (6)
	0.141
	1.70
	1.89
	2.13

	Cimetidine32
	(20)
	0.147
	1.74
	1.94
	2.20

	Metronidazole33
	nutritionally rehabilitated children (13) b
	0.147
	1.75
	1.94
	2.20

	Enalaprilat (active metabolite of enalapril)29
	9 Young (22-30) and 9 Elderly (66-73) subjects (18)
	0.151
	1.77
	1.98
	2.24

	Moxonidine34
	Hypertensive (8)
	0.170
	1.90
	2.15
	2.48

	Treosulfan35
	10 pretreated patients with relapsed ovarian cancer not amenable to platinuim or taxane-based salvage chemmotherapy.  Adequate hepatic and renal function (creatinine clearance >60 ml/min) (10)
	0.170
	1.90
	2.15
	2.49

	Metoclopramide36
	(6)
	0.196
	2.10
	2.42
	2.86

	Carbamazepine37
	Epileptics on long term monotherapy with carbamazepine (39) b
	0.198
	2.12
	2.45
	2.89

	Clozapine-N-Oxide38
	(6)
	0.206
	2.18
	2.53
	3.02

	Sulphamethazine39
	(5)
	0.210
	2.22
	2.58
	3.08

	Viloxazine40
	(16)
	0.211
	2.22
	2.59
	3.10

	Nifedipine41
	bronchopulmonary dysplasia and pulmonary hypertension, age 5-68 months (9) b
	0.265
	2.73
	3.31
	4.15

	Flunisolide42
	12 males age 31-48 (12)
	0.269
	2.77
	3.37
	4.22

	Indomethaqcin43
	Healthy men age 24-28 (5)
	0.269
	2.77
	3.37
	4.23

	Timolol44
	(5)
	0.278
	2.87
	3.51
	4.43

	Triazolam25
	(8)
	0.306
	3.19
	3.98
	5.15

	Clozapine38 
	(7)
	0.307
	3.20
	3.99
	5.18

	Captopril45
	Patients (8, age 5-18, 2M) had renal scarring (which is associated with increased incidence of hypertension)but were normotensive normoreninemic (8) b
	0.338
	3.59
	4.59
	6.10

	Metoclopramide46 
	9 Neonates, premature, fasted (9) b
	0.348
	3.74
	4.81
	6.45

	Dixyrazine47
	(8)
	0.403
	4.60
	6.16
	8.66

	Praziquantel48
	Healthy male volunteers (8)
	0.406
	4.66
	6.26
	8.82

	Norclozapine38
	(7)
	0.451
	5.53
	7.67
	11.22


a (#) = N

b Study population included children under 12 years of age.

Table 4.7.  Observations of Interindividual Variability in Cmax for Drugs and Other Chemicals in the Current Data Base

	Chemical
	Type of Populationa
	Observed Log(GSD)
	Expected Ratio, 95th/Median
	Expected Ratio 97.5th/Median
	Expected Ratio, 99th/Median

	Theophylline49
	(6)
	0.041
	1.17
	1.20
	1.25

	Valproic Acid16
	(10)
	0.045
	1.19
	1.23
	1.27

	Nifedipine50
	6 Healthy men, age 22-28 (6)
	0.062
	1.27
	1.32
	1.40

	Metoclopramide36
	(6)
	0.070
	1.30
	1.37
	1.45

	Trimethoprim22
	(6)
	0.077
	1.34
	1.42
	1.51

	Lorazepam27
	(6)
	0.083
	1.37
	1.46
	1.56

	Sulfamethazine39
	(5)
	0.101
	1.47
	1.58
	1.72

	Bromazepam30
	(10)
	0.112
	1.53
	1.66
	1.82

	Phenylpropanolamine23
	(7)
	0.113
	1.53
	1.67
	1.83

	Prifinium Bromide24
	(6)
	0.115
	1.55
	1.68
	1.85

	Ampicillin17
	(5)
	0.133
	1.65
	1.82
	2.04

	Moxonidine34
	Hypertensive (8)
	0.145
	1.73
	1.92
	2.17

	Dapsone51
	Children (1-4 yr) with malaria (12) b
	0.147
	1.75
	1.94
	2.20

	RRR-alpha Tocopherol52
	(14)
	0.149
	1.76
	1.96
	2.22

	Triazolam53
	healthy children age 6-9 (9) b
	0.153
	1.78
	1.99
	2.27

	Cyclosporin26
	23 Healthy Mexican volunteers (23)
	0.154
	1.79
	2.01
	2.29

	Viloxazine40
	(16)
	0.179
	1.97
	2.24
	2.61

	Haloperidol54
	28 healthy males (28)
	0.184
	2.00
	2.29
	2.67

	Metoclopramide46
	9 Neonates, premature, fasted (9) b
	0.188
	2.04
	2.34
	2.74

	Treosulfan35
	10 pretreated patients with relapsed ovarian cancer not amenable to platinum or taxane-based salvage chemotherapy.  Adequate hepatic and renal function (creatinine clearance >60 ml/min) (10)
	0.219
	2.29
	2.68
	3.23

	Enalapril29
	9 Young (22-30) and 9 Elderly (66-73) subjects (18)
	0.232
	2.41
	2.85
	3.47

	Timolol44
	(5)
	0.239
	2.47
	2.94
	3.60

	Captopril45
	Patients (8, age 5-18, 2M) had renal scarring (which is associated with increased incidence of hypertension) but were normotensive normoreninemic (8) b
	0.270
	2.78
	3.38
	4.24

	Ticlopidine

	10 healthy volunteers, 5M, 5F (10)
	0.285
	2.95
	3.63
	4.61

	Nifedipine41
	9 children aged 5 to 68 months with pulmonary dysplasia and hypertension (9)b
	0.308
	3.21
	4.01
	5.19

	Thiocolchicoside

	(8)
	0.339
	3.61
	4.61
	6.14

	Chromium III55
	healthy volunteers (6)
	0.340
	3.62
	4.64
	6.18

	Dixyrazine47
	(8)
	0.403
	4.60
	6.16
	8.66

	Praziquantel48
	healthy male volunteers (8)
	0.575
	8.82
	13.39
	21.75


a (#) = N

b Study population included children under 12 years of age.

Table 4.8.  Statistically Weighted Regression Equations for the Effect of the Presence of Children Under 12 in Groups Studied for Interindividual Variability in AUC and Cmax Pharmacokinetic Parameters

AUC  log[Log(GSD)] = -0.805 + 0.111* (1 if group contains children under 12; 0 if no children)




(+ 0.079 std error of the 0.111 estimate) 

Implications for weighted central estimates of AUC variability for the median chemical:

	
	log[Log(GSD)]
	Log(GSD)

	without children under 12
	-0.805
	0.157

	with children under 12
	-0.694
	0.202


Cmax log[Log(GSD)] = -0.796  +  0.0925*(1 if group contains children under 12; 0 if no children)

 (+ 0.123 std error of the 0.0925 estimate) 

Implications for weighted central estimates of Cmax variability for the median chemical:

	
	log[Log(GSD)]
	Log(GSD)

	without children under 12
	-0.796
	0.160

	with children under 12
	-0.704
	0.198


Table 4.9.  Uncertainty Distributions for Pharmacokinetic and Pharmacodynamic Interindividual Variability

	Percentile of Confidence/Uncertainty Distribution
	Log(GSD) for PK Variability

	Log(GSD) for PD Variability

	
	Baseline PK Uncertainty

Log[log(GSD)] = 0.092]
	95% Upper Confidence Limit for PK Uncertainty Log[log(GSD)] = 0.163
	Baseline PD Uncertainty Log[log(GSD)] = 0.161

	1
	0.123
	0.084
	0.137

	5
	0.142
	0.109
	0.177

	10
	0.154
	0.125
	0.203

	25
	0.175
	0.157
	0.254

	50
	0.202
	0.202
	0.326

	75
	0.233
	0.261
	0.418

	90
	0.265
	0.328
	0.524

	95
	0.287
	0.376
	0.599

	99
	0.331
	0.486
	0.772


TABLE 4.10.  Distributional Results for the Base Case (central estimate of PK variability = Log(GSD) .202 with Log[log(GSD)] uncertainty = .092); (central estimate PD variability = .325 with Log[log(GSD)] uncertainty = .161) (Data represent means of three Monte Carlo simulation runs of 5000 trials each)

	Chemical
	Estimated median (50% confidence) risk at RfD
	Estimated arithmetic mean risk at RfD
	Upper 95% confidence limit on risk at the RfD
	Fold increase in  RfD needed to cause 1/100,000 risk with 50% confidence
	Fold reduction in RfD needed to achieve 95% confidence that risk is under 1/100,000

	4-(2,4-Dichlorophenoxy)butyric acid
	very small
	2.2E-04
	2.9E-03
	18
	0.54

	Tridiphane
	5.2E-07
	1.5E-03
	2.5E-02
	2.0
	3.4

	Sodium azide
	1.8E-08
	7.0E-04
	1.1E-02
	1.9
	4.6

	S-Ethyl dipropylthiocarbamate
	8.8E-07
	2.1E-03
	3.2E-02
	1.8
	4.2

	1,2,4,5-Tetrachlorobenzene
	very small
	4.6E-05
	9.5E-04
	51
	0.42

	Ethephon
	1.5E-05
	2.1E-03
	3.6E-02
	0.9
	5.2

	Tetraethyldithiopyrophosphate
	8.2E-09
	5.7E-04
	8.8E-03
	2.2
	4.3

	2,4,6-Trinitrotoluene 
	very small
	2.5E-04
	3.6E-03
	4.8
	2.0

	Butyl benzyl phthalate
	3.2E-09
	4.8E-04
	7.4E-03
	2.6
	3.4

	Octabromodiphenyl ether
	4.3E-07
	2.6E-03
	4.0E-02
	2.1
	4.8

	Metolachlor
	4.6E-06
	2.9E-03
	4.7E-02
	1.2
	5.8

	Dichloromethane
	9.4E-08
	9.7E-04
	1.6E-02
	2.8
	2.4

	Acetophenone
	very small
	1.0E-03
	1.3E-02
	8.3
	1.52

	Nickel, soluble salts
	1.3E-09
	1.0E-03
	1.1E-02
	6.3
	1.58

	Methoxychlor
	very small
	7.3E-04
	1.1E-02
	7.7
	1.35

	Acetochlor
	8.1E-09
	5.5E-04
	8.5E-03
	4.6
	1.52

	Dacthal
	5.2E-09
	6.0E-04
	9.0E-03
	4.9
	1.59

	Methyl methacrylate
	5.1E-06
	6.8E-03
	1.0E-01
	1.1
	16.1

	Geometric mean reduction to RfDs needed to meet the “straw man” criterion of <1/100,000 risk with 95% confidence 
	2.54

	Fold reduction to RfDs for needed for 17/18 RfDs to meet the “straw man” criterion of <1/100,000 risk with 95% confidence
	5.8


Table 4.11.  Fold Reductions in RfD Needed to Meet the “Straw Man” Risk Management Criterion, Given Different Changes in the Information Status on Pharmacokinetic and Pharmacodynamic Variability (Data represent means of three Monte Carlo simulation runs of 5000 trials each)

	
	Base Case
	95% Upper Confidence Limit for PK Uncertainty
	Perfect Information for PK Variability
	Perfect Information for PD Variability
	Perfect Information for Both PK and PD Variability

	Central Log(GSD) for PK Variability
	0.202
	0.202
	0.202
	0.202
	0.202

	Log[log(GSD)] Uncert. in PK Variability
	0.092
	0.164
	0
	0.092
	0

	Central Log(GSD) for PD Variability
	0.325
	0.325
	0.325
	0.325
	0.325

	Log[log(GSD)] Uncert. in PD Variability
	0.161
	0.161
	0.161
	0
	0

	4-(2,4-Dichlorophenoxy)butyric acid
	0.54
	0.61
	0.49
	0.18
	0.17

	Tridiphane
	3.4
	4.3
	3.4
	1.00
	0.92

	Sodium azide
	4.6
	5.7
	4.4
	1.52
	1.41

	S-Ethyl dipropylthiocarbamate
	4.2
	5.3
	4.0
	1.28
	1.12

	1,2,4,5-Tetrachlorobenzene
	0.42
	0.49
	0.39
	0.14
	0.13

	Ethephon
	5.2
	6.7
	5.1
	0.73
	0.45

	Tetraethyldithiopyrophosphate
	4.3
	5.2
	4.3
	1.41
	1.30

	2,4,6-Trinitrotoluene 
	2.0
	2.3
	1.9
	0.67
	0.60

	Butyl benzyl phthalate
	3.4
	4.3
	3.3
	1.21
	1.04

	Octabromodiphenyl ether
	4.8
	6.0
	4.3
	1.67
	1.59

	Metolachlor
	5.8
	7.1
	5.9
	1.70
	1.52

	Dichloromethane
	2.4
	3.1
	2.4
	0.65
	0.60

	Acetophenone
	1.52
	1.78
	1.46
	0.54
	0.51

	Nickel, soluble salts
	1.58
	1.85
	1.48
	0.47
	0.44

	Methoxychlor
	1.35
	1.59
	1.37
	0.51
	0.46

	Acetochlor
	1.52
	1.71
	1.47
	0.42
	0.38

	Dacthal
	1.59
	1.78
	1.47
	0.44
	0.40

	Methyl methacrylate
	16.1
	17.3
	14.4
	4.7
	4.2

	Geometric mean RfD reduction needed to meet the “straw man” criterion
	2.54a
	3.03
	2.43
	0.767
	0.685

	Fold reduction needed for 17/18 RfDs to meet the “straw man” criterion
	5.8
	7.1
	5.9
	1.7
	1.6


a Three significant figures are shown in this row in order to facilitate reproduction of the comparative calculations across columns that are reported and discussed in the text.  

Table 4.12.  Results of a Multiple Regression Analysis for the Effects of Various Independent Variables on the Log of the Multiplicative Reduction Needed for Current RfDs to Meet the “Straw Man” Risk Management Criterion 

	Term
	Regression Estimate
	Std Error
	t Ratio
	Prob>|t|

	Intercept
	1.348
	0.337
	-4
	0.0013

	Quantal? 1 if yes 0 if no
	-0.414
	0.164
	2.52
	0.0243

	Log(Unc fact)
	-0.356
	0.130
	2.73
	0.0163

	No LOAEL available 
	0.760
	0.219
	-3.48
	0.0037


Figure Captions

Figure 4.1
Flow chart for the analysis in this paper.

Figure 4.2.
Unweighted Log probability plots of the distributions of oral AUC and Cmax log(GSD)s for all drugs/chemicals with available data

Figure 4.3. 
Derivation of the central estimate of the real variability among chemical-specific AUC and Cmax values based on a group of the 10 strongest data points

Figure 4.4. 
Multiplicative reduction in the RfD that would be needed to reach the “straw man” risk criterion – continuous vs. quantal endpoints
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* The summary measure for each chemical is a Log(GSD)—the standard deviation of the base 10 logarithms of the measured AUC or Cmax parameter for each person studied.  Because the Log(GSD) values for individual chemicals appear to be themselves approximately lognormally distributed we express the spread of variability measurements for different chemicals as a log[Log(GSD)—the standard deviation of the Log(GSD) measures for the various chemicals/drugs.


� The multiplicative distance between the 95th and 50th percentiles is erroneously referred to in the guidance as 2 geometric standard deviations of a lognormal distribution, whereas it actually represents only about 1.64 standard deviations.  A point that is 2 geometric standard deviations above the median corresponds to approximately the 97.5th percentile of a lognormal distribution.


� There is an important distinction in this initial derivation of animal ED50s between quantal and continuous endpoints.  For continuous endpoints, such as changes in fetal growth, LOAELs are essentially determined at the point where the group average value differs from control values by an amount (often as much as 5% for fetal growth) that is deemed statistically and toxicologically significant.  Therefore for these continuous parameters where the average member of a studied group shows a significant effect, we do not further adjust the LOAEL to estimate an animal ED50.  On the other hand, for quantal parameters (e.g., the incidence of some manifestly adverse yes-no effect, such as cardiomyopathy or kidney lesions (see Table 4.1), we do adjust the LOAEL dose upward to account for the difference in dose between that causing a barely statistically detectable incidence (about 5%-20%) and an ED50.  See Hattis et al.� ADDIN REFMGR.CITE <Refman><Cite><Author>Hattis</Author><Year>2002</Year><RecNum>291</RecNum><IDText>A straw man proposal for a quantitative definition of the RfD</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>291</Ref_ID><Title_Primary>A straw man proposal for a quantitative definition of the RfD</Title_Primary><Authors_Primary>Hattis,D.</Authors_Primary><Authors_Primary>Baird,S.</Authors_Primary><Authors_Primary>Goble,R.</Authors_Primary><Date_Primary>2002</Date_Primary><Reprint>Not in File</Reprint><Start_Page>403</Start_Page><End_Page>436</End_Page><Periodical>Drug Chem.Toxicol.</Periodical><Volume>25</Volume><Issue>4</Issue><ZZ_JournalStdAbbrev><f name="System">Drug Chem.Toxicol.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>�2� for details of this adjustment, and the larger and more uncertain adjustment needed for the few cases where the data did not contain a LOAEL and a NOAEL needed to be used as the starting point.


� The variance of a distribution is simply the square of the standard deviation.  The lognormal variance is therefore just the square of the log(GSD).


� For continuous parameters, such as directly measured doses causing a particular degree of change in a physiological parameter, or continuous pharmacokinetic parameters such as AUC or Cmax, we derived an approximate relationship for the statistically predicted variance in the Log[log(GSD)] that was simply dependent on sample size:� ADDIN REFMGR.CITE <Refman><Cite><Author>Hattis</Author><Year>1999</Year><RecNum>293</RecNum><IDText>Distributions of individual susceptibility among humans for toxic effects.  How much protection does the traditional tenfold factor provide for what fraction of which kinds of chemicals and effects?</IDText><MDL Ref_Type="Journal"><Ref_Type>Journal</Ref_Type><Ref_ID>293</Ref_ID><Title_Primary>Distributions of individual susceptibility among humans for toxic effects.  How much protection does the traditional tenfold factor provide for what fraction of which kinds of chemicals and effects?</Title_Primary><Authors_Primary>Hattis,D.</Authors_Primary><Authors_Primary>Banati,P.</Authors_Primary><Authors_Primary>Goble,R.</Authors_Primary><Date_Primary>1999</Date_Primary><Reprint>Not in File</Reprint><Start_Page>286</Start_Page><End_Page>316</End_Page><Periodical>Ann.N.Y.Acad.Sci.</Periodical><Volume>895</Volume><ZZ_JournalStdAbbrev><f name="System">Ann.N.Y.Acad.Sci.</f></ZZ_JournalStdAbbrev><ZZ_WorkformID>1</ZZ_WorkformID></MDL></Cite></Refman>�10�


Predicted sampling-error variance in Log[log(GSD)] = 1/(10.6 N - 10.33)


Where N is the number of people for whom the continuous parameter was measured.  For quantal parameters (such as the percentages of people showing a particular response as a function of dose—e.g., nausea or vomiting in response to consumption of a copper solution) the statistical sampling error was derived from a determination of 5%-95% confidence limits on the probit slope, as derived using a binomial likelihood-based spreadsheet dose response modeling system adapted from the one developed by Haas (1994).  [Haas CN. 1994. Dose-response analysis using spreadsheets. Risk Anal. 14(6):1097-1100.]


�  The numbers in the second and third columns of this table are Log(GSD)s for pharmacokinetic variability under the central estimate vs upper confidence limit assumptions for the true spread of chemical-to-chemical differences in PK variability.  For example, under the central estimate log[Log(GSD)] = 0.092 uncertainty assumption, the 95th percentile chemical would have a Log(GSD) for pharmacokinetic variability of .287.  Under the high-uncertainty-estimate assumption, log[Log(GSD)] = 0.092, the 95th percentile chemical would have a Log(GSD) for pharmacokinetic variability of  0.376.





� A. .J. Lehman and O. G. Fitzhugh, 100-fold margin of safety, Assoc. Food Drug Off. U.S. Q. Bull. 18 (1954) 33-35.


� Knudsen JB, Bastain W, Sefton CM, Allen JG, Dickinson JP. 1992. Pharmacokinetics of ticlopidine during chronic oral administration to healthy volunteers and its effects on antipyrine pharmacokinetics. Xenobiotica. 22(5):579-89.


� Perucca E, Poitou P, Pifferi G. 1995. Comparative pharmacokinetics and bioavailability of two oral formulations of thiocolchicoside, a GABA-mimetic muscle relaxant drug, in normal volunteers. Eur J Drug Metab Pharmacokinet. 20(4):301-5.
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